Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Public Health ; 12: 1329382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38528866

RESUMEN

Background: Limited information is available on geographic disparities of COVID-19 vaccination in Missouri and yet this information is essential for guiding efforts to improve vaccination coverage. Therefore, the objectives of this study were to (a) investigate geographic disparities in the proportion of the population vaccinated against COVID-19 in Missouri and (b) identify socioeconomic and demographic predictors of the identified disparities. Methods: The COVID-19 vaccination data for time period January 1 to December 31, 2021 were obtained from the Missouri Department of Health. County-level data on socioeconomic and demographic factors were downloaded from the 2020 American Community Survey. Proportions of county population vaccinated against COVID-19 were computed and displayed on choropleth maps. Global ordinary least square regression model and local geographically weighted regression model were used to identify predictors of proportions of COVID-19 vaccinated population. Results: Counties located in eastern Missouri tended to have high proportions of COVID-19 vaccinated population while low proportions were observed in the southernmost part of the state. Counties with low proportions of population vaccinated against COVID-19 tended to have high percentages of Hispanic/Latino population (p = 0.046), individuals living below the poverty level (p = 0.049), and uninsured (p = 0.015) populations. The strength of association between proportion of COVID-19 vaccinated population and percentage of Hispanic/Latino population varied by geographic location. Conclusion: The study findings confirm geographic disparities of proportions of COVID-19 vaccinated population in Missouri. Study findings are useful for guiding programs geared at improving vaccination coverage and uptake by targeting resources to areas with low proportions of vaccinated individuals.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Missouri/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Retrospectivos , Vacunación
2.
Front Public Health ; 11: 1062177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006524

RESUMEN

Background: Although the burden of the coronavirus disease 2019 (COVID-19) has been different across communities in the US, little is known about the disparities in COVID-19 burden in North Dakota (ND) and yet this information is important for guiding planning and provision of health services. Therefore, the objective of this study was to identify geographic disparities of COVID-19 hospitalization risks in ND. Methods: Data on COVID-19 hospitalizations from March 2020 to September 2021 were obtained from the ND Department of Health. Monthly hospitalization risks were computed and temporal changes in hospitalization risks were assessed graphically. County-level age-adjusted and spatial empirical Bayes (SEB) smoothed hospitalization risks were computed. Geographic distributions of both unsmoothed and smoothed hospitalization risks were visualized using choropleth maps. Clusters of counties with high hospitalization risks were identified using Kulldorff's circular and Tango's flexible spatial scan statistics and displayed on maps. Results: There was a total of 4,938 COVID-19 hospitalizations during the study period. Overall, hospitalization risks were relatively stable from January to July and spiked in the fall. The highest COVID-19 hospitalization risk was observed in November 2020 (153 hospitalizations per 100,000 persons) while the lowest was in March 2020 (4 hospitalizations per 100,000 persons). Counties in the western and central parts of the state tended to have consistently high age-adjusted hospitalization risks, while low age-adjusted hospitalization risks were observed in the east. Significant high hospitalization risk clusters were identified in the north-west and south-central parts of the state. Conclusions: The findings confirm that geographic disparities in COVID-19 hospitalization risks exist in ND. Specific attention is required to address counties with high hospitalization risks, especially those located in the north-west and south-central parts of ND. Future studies will investigate determinants of the identified disparities in hospitalization risks.


Asunto(s)
COVID-19 , Humanos , North Dakota/epidemiología , Teorema de Bayes , COVID-19/epidemiología , Hospitalización
3.
BMC Public Health ; 23(1): 720, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081453

RESUMEN

BACKGROUND: COVID-19 is an important public health concern due to its high morbidity, mortality and socioeconomic impact. Its burden varies by geographic location affecting some communities more than others. Identifying these disparities is important for guiding health planning and service provision. Therefore, this study investigated geographical disparities and temporal changes of the percentage of positive COVID-19 tests and COVID-19 incidence risk in North Dakota. METHODS: COVID-19 retrospective data on total number of tests and confirmed cases reported in North Dakota from March 2020 to September 2021 were obtained from the North Dakota COVID-19 Dashboard and Department of Health, respectively. Monthly incidence risks of the disease were calculated and reported as number of cases per 100,000 persons. To adjust for geographic autocorrelation and the small number problem, Spatial Empirical Bayesian (SEB) smoothing was performed using queen spatial weights. Identification of high-risk geographic clusters of percentages of positive tests and COVID-19 incidence risks were accomplished using Tango's flexible spatial scan statistic. ArcGIS was used to display and visiualize the geographic distribution of percentages of positive tests, COVID-19 incidence risks, and high-risk clusters. RESULTS: County-level percentages of positive tests and SEB incidence risks varied by geographic location ranging from 0.11% to 13.67% and 122 to 16,443 cases per 100,000 persons, respectively. Clusters of high percentages of positive tests were consistently detected in the western part of the state. High incidence risks were identified in the central and south-western parts of the state, where significant high-risk spatial clusters were reported. Additionally, two peaks (August 2020-December 2020 and August 2021-September 2021) and two non-peak periods of COVID-19 incidence risk (March 2020-July 2020 and January 2021-July 2021) were observed. CONCLUSION: Geographic disparities in COVID incidence risks exist in North Dakota with high-risk clusters being identified in the rural central and southwest parts of the state. These findings are useful for guiding intervention strategies by identifying high risk communities so that resources for disease control can be better allocated to communities in need based on empirical evidence. Future studies will investigate predictors of the identified disparities so as to guide planning, disease control and health policy.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , North Dakota/epidemiología , Incidencia , Estudios Retrospectivos , Teorema de Bayes
4.
BMC Public Health ; 23(1): 79, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631768

RESUMEN

BACKGROUND: Understanding geographic disparities in Coronavirus Disease 2019 (COVID-19) testing and outcomes at the local level during the early stages of the pandemic can guide policies, inform allocation of control and prevention resources, and provide valuable baseline data to evaluate the effectiveness of interventions for mitigating health, economic and social impacts. Therefore, the objective of this study was to identify geographic disparities in COVID-19 testing, incidence, hospitalizations, and deaths during the first five months of the pandemic in Florida.  METHODS: Florida county-level COVID-19 data for the time period March-July 2020 were used to compute various COVID-19 metrics including testing rates, positivity rates, incidence risks, percent of hospitalized cases, hospitalization risks, case-fatality rates, and mortality risks. High or low risk clusters were identified using either Kulldorff's circular spatial scan statistics or Tango's flexible spatial scan statistics and their locations were visually displayed using QGIS. RESULTS: Visual examination of spatial patterns showed high estimates of all COVID-19 metrics for Southern Florida. Similar to the spatial patterns, high-risk clusters for testing and positivity rates and all COVID-19 outcomes (i.e. hospitalizations and deaths) were concentrated in Southern Florida. The distributions of these metrics in the other parts of Florida were more heterogeneous. For instance, testing rates for parts of Northwest Florida were well below the state median (11,697 tests/100,000 persons) but they were above the state median for North Central Florida. The incidence risks for Northwest Florida were equal to or above the state median incidence risk (878 cases/100,000 persons), but the converse was true for parts of North Central Florida. Consequently, a cluster of high testing rates was identified in North Central Florida, while a cluster of low testing rate and 1-3 clusters of high incidence risks, percent of hospitalized cases, hospitalization risks, and case fatality rates were identified in Northwest Florida. Central Florida had low-rate clusters of testing and positivity rates but it had a high-risk cluster of percent of hospitalized cases. CONCLUSIONS: Substantial disparities in the spatial distribution of COVID-19 outcomes and testing and positivity rates exist in Florida, with Southern Florida counties generally having higher testing and positivity rates and more severe outcomes (i.e. hospitalizations and deaths) compared to Northern Florida. These findings provide valuable baseline data that is useful for assessing the effectiveness of preventive interventions, such as vaccinations, in various geographic locations in the state. Future studies will need to assess changes in spatial patterns over time at lower geographical scales and determinants of any identified patterns.


Asunto(s)
Prueba de COVID-19 , COVID-19 , Humanos , Florida/epidemiología , COVID-19/diagnóstico , COVID-19/epidemiología , Incidencia
5.
BMC Public Health ; 22(1): 243, 2022 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-35125102

RESUMEN

BACKGROUND: The prevalence of both prediabetes and diabetes have been increasing in Florida. These increasing trends will likely result in increases of stroke burden since both conditions are major risk factors of stroke. However, not much is known about the prevalence and predictors of stroke among adults with prediabetes and diabetes and yet this information is critical for guiding health programs aimed at reducing stroke burden. Therefore, the objectives of this study were to estimate the prevalence and identify predictors of stroke among persons with either prediabetes or diabetes in Florida. METHODS: The 2019 Behavioral Risk Factor Surveillance System (BRFSS) survey data were obtained from the Florida Department of Health and used for the study. Weighted prevalence estimates of stroke and potential predictor variables as well as their 95% confidence intervals were computed for adults with prediabetes and diabetes. A conceptual model of predictors of stroke among adults with prediabetes and diabetes was constructed to guide statistical model building. Two multivariable logistic models were built to investigate predictors of stroke among adults with prediabetes and diabetes. RESULTS: The prevalence of stroke among respondents with prediabetes and diabetes were 7.8% and 11.2%, respectively. The odds of stroke were significantly (p ≤ 0.05) higher among respondents with prediabetes that were ≥ 45 years old (Odds ratio [OR] = 2.82; 95% Confidence Interval [CI] = 0.74, 10.69), had hypertension (OR = 5.86; CI = 2.90, 11.84) and hypercholesterolemia (OR = 3.93; CI = 1.84, 8.40). On the other hand, the odds of stroke among respondents with diabetes were significantly (p ≤ 0.05) higher if respondents were non-Hispanic Black (OR = 1.79; CI = 1.01, 3.19), hypertensive (OR = 3.56; CI = 1.87, 6.78) and had depression (OR = 2.02; CI = 1.14, 3.59). CONCLUSIONS: Stroke prevalence in Florida is higher among adults with prediabetes and diabetes than the general population of the state. There is evidence of differences in the importance of predictors of stroke among populations with prediabetes and those with diabetes. These findings are useful for guiding health programs geared towards reducing stroke burden among populations with prediabetes and diabetes.


Asunto(s)
Diabetes Mellitus , Hipertensión , Estado Prediabético , Accidente Cerebrovascular , Adulto , Diabetes Mellitus/epidemiología , Florida/epidemiología , Humanos , Hipertensión/epidemiología , Persona de Mediana Edad , Estado Prediabético/epidemiología , Prevalencia , Factores de Riesgo , Accidente Cerebrovascular/epidemiología
6.
PLoS One ; 16(7): e0254579, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270601

RESUMEN

BACKGROUND: Although Diabetes Self-Management Education (DSME) programs are recommended to help reduce the burden of diabetes and diabetes-related complications, Florida is one of the states with the lowest DSME participation rates. Moreover, there is evidence of geographic disparities of not only DSME participation rates but the burden of diabetes as well. Understanding these disparities is critical for guiding control programs geared at improving participation rates and diabetes outcomes. Therefore, the objectives of this study were to: (a) investigate geographic disparities of diabetes prevalence and DSME participation rates; and (b) identify predictors of the observed disparities in DSME participation rates. METHODS: Behavioral Risk Factor Surveillance System (BRFSS) data for 2007 and 2010 were obtained from the Florida Department of Health. Age-adjusted diabetes prevalence and DSME participation rates were computed at the county level and their geographic distributions visualized using choropleth maps. Significant changes in diabetes prevalence and DSME participation rates between 2007 and 2010 were assessed and counties showing significant changes were mapped. Clusters of high diabetes prevalence before and after adjusting for common risk factors and DSME participation rates were identified, using Tango's flexible spatial scan statistics, and their geographic distribution displayed in maps. Determinants of the geographic distribution of DSME participation rates and predictors of the identified high rate clusters were identified using ordinary least squares and logistic regression models, respectively. RESULTS: County level age-adjusted diabetes prevalence varied from 4.7% to 17.8% while DSME participation rates varied from 26.6% to 81.2%. There were significant (p≤0.05) increases in both overall age-adjusted diabetes prevalence and DSME participation rates from 2007 to 2010 with diabetes prevalence increasing from 7.7% in 2007 to 8.6% in 2010 while DSME participation rates increased from 51.4% in 2007 to 55.1% in 2010. Generally, DSME participation rates decreased in rural areas while they increased in urban areas. High prevalence clusters of diabetes (both adjusted and unadjusted) were identified in northern and central Florida, while clusters of high DSME participation rates were identified in central Florida. Rural counties and those with high proportion of Hispanics tended to have low DSME participation rates. CONCLUSIONS: The findings confirm that geographic disparities in both diabetes prevalence and DSME participation rates exist. Specific attention is required to address these disparities especially in areas that have high diabetes prevalence but low DSME participation rates. Study findings are useful for guiding resource allocation geared at reducing disparities and improving diabetes outcomes.


Asunto(s)
Diabetes Mellitus/epidemiología , Educación en Salud/tendencias , Disparidades en el Estado de Salud , Automanejo/tendencias , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Diabetes Mellitus/prevención & control , Femenino , Florida , Humanos , Lactante , Masculino , Persona de Mediana Edad , Participación del Paciente/estadística & datos numéricos , Prevalencia , Factores Socioeconómicos
7.
Bioinformation ; 15(12): 853-862, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32256005

RESUMEN

Nipah virus (NiV) is an ssRNA, enveloped paramyxovirus in the genus Henipaveridae with a case fatality rate >70%. We analyzed the NGS RNA-Seq gene expression data of NiV to detect differentially expressed genes (DEGs) using the statistical R package limma. We used the Cytoscape, Ensembl, and STRING tools to construct the gene-gene interaction tree, phylogenetic gene tree and protein-protein interaction networks towards functional annotation. We identified 2707 DEGs (p-value <0.05) among 54359 NiV genes. The top-up and down-regulated DEGs were EPST1, MX1, IFIT3, RSAD2, OAS1, OASL, CMPK2 and SLFN13, SPAC977.17 using log2FC criteria with optimum threshold 1.0. The top 20 up-regulated gene-gene interaction trees showed no significant association between Nipah and Tularemia virus. Similarly, the top 20 down-regulated genes of neither Ebola nor Tularemia virus showed an association with the Nipah virus. Hence, we document the top-up and down-regulated DEGs for further consideration as biomarkers and candidates for vaccine or drug design against Nipah virus to combat infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...